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Abstract: Absorption and luminescence spectra can be used to derive quantitative information about differences 
in molecular structure between the ground and excited electronic states. Examples illustrate the effect of the 
harmonic vibrational frequency and the offset of the potential energy minima along one normal coordinate on the 
observed spectrum. The time-dependent approach to spectroscopy is used, leading to intuitively appealing visual 
representations. 

Introduction 

UV�vis absorption and luminescence spectroscopy are 
techniques encountered throughout undergraduate research. 
Distinct colors, as observed for example for many transition-
metal compounds, provide a directly observable manifestation 
of transitions between electronic states [1]. Discussions of the 
theoretical background used to rationalize the observed colors 
and spectra usually focus on the purely electronic aspects of 
the transition, that is, on population changes in the molecular 
orbitals [1, 2]. This view often leads to a qualitatively correct 
energy order for the expected transitions, and their intensities 
can be estimated using group theory [2]. It does not, however, 
explain the fact that the experimentally observed bands are 
often very broad with widths on the order of thousands of 
wavenumbers, in contrast to infrared or Raman spectra, which 
show transitions narrower by approximately three orders of 
magnitude [2]. 

The large bands determining the color of many compounds 
arise from vibronic processes. Sometimes the broad bands in a 
UV-vis spectrum are resolved into their individual vibronic 
transitions, allowing the vibrational modes involved in the 
transition to be identified [3]. The standard treatment of 
vibronic band shapes, rigorously described for both harmonic 
and anharmonic (Morse) potential wells in a recent publication 
at the advanced undergraduate level [4] is based on the 
separation of electronic and nuclear wave functions and the 
calculation of overlap integrals to obtain the intensity of each 
line, as illustrated in Figure 1 where the relevant overlaps are 
shaded in gray. This separation can appear artificial to 
students, and the band shapes of absorption and luminescence 
spectra are not easily recognized to carry important 
information on structural differences between the initial and 
final states of an electronic transition. 

We present quantitative animations of electronic transitions 
that lead to calculated band shapes using a time-dependent 
alternative (but mathematically equivalent [5]) approach to the 
traditional time-independent Franck�Condon treatment 
illustrated in Figure 1. The time-dependent animations 
presented in the following are intuitively appealing and show 

that key general characteristics of electronic spectra can be 
deduced without calculating all final-state eigenfunctions and 
determining their overlap with the eigenfunction of the initial 
state. The theoretical background has been presented in a 
recent article in this journal [6] and elsewhere [7, 8]. The 
vibronic nature of electronic transitions is emphasized by this 
approach. We have used the animations to discuss band shapes 
of electronic absorption and luminescence spectra in a class 
for advanced undergraduate and first-year graduate students 
and their feedback has encouraged us to make them available 
in the following. Animations for situations involving multiple 
electronic states and multidimensional potential-energy 
surfaces are published elsewhere [9, 10]. 

Potential Energy Surfaces and Transitions 

We discuss the vibronic band shapes of spectra arising from 
the potential-energy surfaces in Figure 1. The energy is given 
in wavenumbers (cm�1) as a function of a dimensionless 
normal coordinate, Q, which does not oblige us to limit our 
treatment to a specific reduced mass. The conversion of Q 
from the dimensionless units used here to Ångstrom units is 
given in ref 11. The potential energy of the ground state is 
given by: 

 21
2gs gsE Qω= !  (1) 

The potential energy of the excited state is given by: 

 ( )2
00

1
2es esE Q Eω= − ∆ +!  (2) 

where gsω!  and esω!  denote the vibrational frequencies of 

the ground and excited states in cm�1. Τhe offset of the 
potential-energy minima along Q is given as ∆, and E00 
denotes the energy of the electronic origin, corresponding 
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Figure 1. Schematic view of the ground-state potential-energy surface 
(red) and the excited-state potential energy surface (blue). Absorption 
and luminescence transitions are given as yellow arrows. The 
difference between potential-energy minima along the normal 
coordinate Q is defined as ∆. 

to the transition between the lowest energy levels within the 
two potential wells. We set E00 to 20,000 cm�1 for the 
calculations presented in the following. Often the relevant 
vibrational frequencies and the energy of the electronic origin 
are known from experimental spectra, but the offset, ∆, can not 
be directly read from a spectrum and is, therefore, usually not 
determined, even though it is an important quantity defining 
the band shape of an experimental spectrum. The offset, ∆, is 
especially large for transitions involving the transfer of an 
electron from a bonding to an antibonding orbital (or vice 
versa), which always leads to a broad band due to the large 
bond length changes between the ground and excited states. In 
contrast, narrow bands are observed for many 
intraconfigurational transitions, for instance, in lanthanide 
compounds. In general, offsets along several coordinates 
define the structural differences between the ground and 
excited states. Such situations can be treated using multiple 
one-dimensional surfaces [5, 11, 12]. The photochemical 
reactivity of a molecule is determined by its excited-state 
structure [12]. Our one-dimensional models illustrate only the 
simplest possible situations, but they are sufficient to analyze 
many experimental spectra because the largest bond-length 
change often occurs along a single normal coordinate, 
illustrated, for example, by the solution absorption spectrum of 
the permanganate ion. The animations presented here, 
therefore, provide the key insight on the factors determining 
the vibronic band shapes in absorption and luminescence 
spectra. 

Wavepacket Dynamics 

In this section we provide quantitative animations of the 
vibronic dynamics for transitions between the harmonic 
potential surfaces shown in Figure 1. We systematically vary 
the offset, ∆, between the two states and their vibrational 
frequencies gsω!  and esω! . 

Before an electronic transition, a molecule can be described 
by its lowest-energy eigenfunction in the initial state of the 
transition, corresponding to either the red (absorption) or blue 
(emission) potential well in Figure 1. In the course of an 
allowed electronic transition, this eigenfunction is transferred 
from the initial to the final state surface where it is generally 
away from the minimum of the potential well. This 
wavepacket evolves with time in the manner shown in Figures 
2 to 4 and 6 to 8 for luminescence bands. The most important 
quantity resulting from the dynamics in Figures 2 to 4 and 6 to 
8 is the time-dependent overlap of the moving wave function 
with the initial wave function at t = 0. This time-dependent 
measure of how different the wave function at time t > 0 is 
from what it was at time t = 0 is known as the autocorrelation 
function [5, 11�13], and its absolute value is shown as a 
yellow line in the bottom panel of all animations. Its initial 
value at time t = 0 always equals 1. As the time-dependent 
wave function moves away from its starting position, the 
autocorrelation first decreases and then increases to a 
maximum after one vibrational period. We multiply the 
autocorrelation curve in all the following figures by a damping 
factor exp(�Γ2t2) to force it to become zero at long times. The 
parameter Γ defines the width of each individual vibronic 
transition in a resolved spectrum, but its choice is not critical 
for the following discussion, which is aimed at unresolved 
band envelopes. The lowest physically possible value of Γ 
corresponds to the homogeneous line width, which is related 
to the lifetime of the excited state by the uncertainty principle 
[14, 15]. In spectra of molecules in a solution or in the solid 
state, the line widths are determined by inhomogeneous 
broadening due to slightly different energy levels for an 
ensemble of molecules. This inhomogeneous line width is 
orders of magnitude larger than the intrinsic homogeneous 
linewidth [15]. The damping factor, Γ, is, therefore, usually a 
phenomenological description of line widths arising from 
inhomogeneous broadening. For solution and solid-state 
spectra, a value on the order of 10 to 100 cm�1 is often 
adequate. 

First, we examine a set of animations with different offsets, 
∆, between the potential minima, assuming identical 
vibrational energies for the potentials in Figure 1. 

In all following animations, we include only the final-state 
potential, corresponding to the ground state for an emission 
transition. The simplest situation is shown in Figure 2. The 
minima of the ground- and excited-state potentials are not 
shifted and the ∆ value is zero. The wave function placed on 
the ground-state surface in the electronic transition does not 
move with time and the autocorrelation simply decreases with 
the phenomenological damping factor exp(�Γ2t2). This 
situation applies to all transitions involving identical harmonic 
potentials and ∆ = 0 for the initial and final states, leading to 
spectra that do not carry vibronic information. 

Figure 3 illustrates the situation for a small offset, ∆. The 
excited-state potential minimum is at a higher value of the 
normal coordinate Q, whose frequency was chosen as 

-1350 cmgs esω ω= =! !  for this example. The time evolution 
shown in the animation clearly reveals that the vibronic 
dynamics and recurrences are observed in the autocorrelation 
after each vibrational period of 95 fs, a value obtained as 
( )c ω! �1, where c denotes the speed of light in cm s�1. These
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Figure 2. Luminescence transition showing the time evolution of the 
emitting-state wave function on the ground-state potential surface in 
the course of the transition. The vibrational frequencies, gsω!  

and esω! , are identical and set to 350 cm�1. The offset between the 
potential minima is 0. Download and play animation (Figure2.mov). 

 
Figure 3. Luminescence transition showing the time evolution of the 
emitting-state wave function on the ground-state potential surface in 
the course of the transition. The vibrational frequencies, gsω!  

and esω! , are identical and set to 350 cm�1. The offset, ∆, between 
the potential minima is 1. Download and play animation 
(Figure3.mov). 

recurrences are easily seen to occur at times of maximum 
overlap between the wavepacket at time t = 0, given as a thin 
red line in the top panel, and the moving wavepacket. The ∆ 
value is small and the autocorrelation stays at values 
significantly higher than zero, even when the wavepacket is 
the farthest away from its initial position. Figure 4 illustrates a 

 
Figure 4. Luminescence transition showing the time evolution of the 
emitting-state wave function on the ground-state potential surface in 
the course of the transition. The vibrational frequencies, gsω!  

and esω! , are identical and set to 350 cm�1. The offset, ∆, between 
the potential minima is 3. Download and play animation 
(Figure4.mov). 

 
Figure 5. Autocorrelation functions for the models in Figures 2 to 4 
for different ∆ values: ∆ = 3 (yellow dotted trace),   ∆ = 1 (red 
trace), and ∆ = 0 (green trace). 

transition between potentials that are offset by a larger ∆ value 
of 3, but with the same vibrational frequencies as in Figures 2 
and 3. The vibrational period stays at the same value of 95 fs, 
but the motion of the wavepacket is faster than in Figure 3 
because the slope of the potential in the starting region of the 
wavepacket is steeper. This leads to a faster decrease of the 
autocorrelation with time. The three autocorrelation functions 
are compared in Figure 5. The initial decrease is faster for 
large ∆ values, but the recurrences occur at the same times, 
because they are determined by the 350-cm�1 vibrational 
frequency of the ground state. The wavepacket dynamics and 
autocorrelation functions calculated for harmonic potential-
energy surfaces offset by ± ∆ are identical. The sign of ∆ can, 
therefore, not be determined from a model based on harmonic 
potentials, in contrast to anharmonic potentials where a change 
of the sign of ∆ leads to different wavepacket dynamics, a 

http://dx.doi.org/10.1007/s00897000466b
http://dx.doi.org/10.1007/s00897000466c
http://dx.doi.org/10.1007/s00897000466c
http://dx.doi.org/10.1007/s00897000466d
http://dx.doi.org/10.1007/s00897000466d
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Figure 6. Luminescence transition showing the time evolution of the 
emitting-state wave function on the ground-state potential surface in 
the course of the transition. The vibrational frequencies, gsω!  

and esω! , are identical and set to 600 cm�1. The offset, ∆, between 
the potential minima is 3. Download and play animation 
(Figure6.mov). 

 
Figure 7. Luminescence transition showing the time evolution of the 
emitting-state wave function on the ground-state potential surface in 
the course of the transition. The vibrational frequencies of the excited 
and ground state are -1600 cmesω =! and -1350 cmgsω =!  

respectively. The offset, ∆, between the potential minima is 0. 
Download and play animation (Figure7.mov). 

different autocorrelation, and a different band shape in the 
spectrum. 

Figure 6 illustrates the effect of a higher vibrational 
frequency on the wavepacket dynamics and autocorrelation 
functions. The initial motion is faster than for the animations 
in Figures  3  and  4, a  consequence of the steeper slope of the  

 
Figure 8. Luminescence transition showing the time evolution of the 
emitting-state wave function on the ground-state potential surface in 
the course of the transition. The vibrational frequencies of the excited- 
and ground-state values of gsω!  and !ωes are 350 cm�1 and 600 cm�1, 

respectively. The offset, ∆, between the potential minima is 3. 
Download and play animation (Figure8.mov). 

potential in the regions initially explored by the wavepacket. 
Recurrences occur after shorter periods than for the preceding 
animations because of the higher frequency in Figure 6. 
Maxima occur after 55 fs, the vibrational period corresponding 
to the frequency of 600 cm�1. 

Figures 7 and 8 illustrate situations where the two potentials 
have different vibrational frequencies. In both situations, the 
ground-state potential has the same 350-cm�1 vibrational 
frequency as in Figures 2 to 4 and the excited state frequency 
is 600 cm�1, the value used in Figure 6. Figure 7 shows the 
wavepacket dynamics for a ∆ value of zero. In contrast to 
Figure 2, Figure 7 shows a distinct time evolution with 
recurrences occurring after 43 fs. This interval is shorter by 
roughly a factor of two than the vibrational period for the 350-
cm�1 vibrational mode. The wavepacket dynamics in Figure 7 
is unusual: the two halves of the wave function swap sides, 
leading to maximum overlap after only half of a vibrational 
period. 

Figure 8 shows a situation that combines different 
vibrational frequencies for the two potentials with a nonzero ∆ 
value. The wavepacket dynamics is a combination of the 
effects illustrated in Figure 7 and the simpler vibrational 
motion in Figures 3, 4, and 6. The autocorrelation is dominated 
by the recurrences after each vibrational period that correspond 
to the 350-cm�1 mode of the ground state. The shape of these 
recurrences is slightly different from Figure 4, a consequence 
of the different frequencies of the initial and final states of the 
transition, but Figure 9 illustrates that these differences are 
minor, even for the large change of vibrational frequencies 
chosen for the model in Figure 7. In general, vibrational 
frequencies of the ground and excited states vary by much 
smaller amounts and models based on identical harmonic 
frequencies for both states provide adequate descriptions of 
unresolved spectra. 

http://dx.doi.org/10.1007/s00897000466e
http://dx.doi.org/10.1007/s00897000466e
http://dx.doi.org/10.1007/s00897000466f
http://dx.doi.org/10.1007/s00897000466g
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Figure 9. Autocorrelation function of Figures 4 (red trace) and 8 
(yellow dotted trace). 

 
Figure 10. Calculated luminescence (red dotted traces) and 
absorption (blue traces) of the models in Figures 2 to 4, that is, for 
different ∆ values: (a) ∆ = 0, (b)  ∆ = 1, and (c) ∆ = 3. 

Calculated Spectra. We present calculated absorption and 
luminescence spectra corresponding to the transitions 
schematically illustrated in Figure 1. The absorption and 
luminescence spectra calculated from the autocorrelation 
functions in Figures 2 to 4 are shown in Figure 10. The top 
trace shows that a single line is observed for a ∆ value of 0, 
corresponding to the electronic origin with an identical 
transition energy for absorption and luminescence. 
Progressions consisting of peaks separated by 350 cm�1 appear 
for nonzero ∆ values. The number of peaks visible in the 
spectra increases with ∆ and the Stokes shift, the energy 
separation of absorption and excited-state potentials with 
identical force constants, and luminescence maxima, also 
increases with ∆. For ground- and excited-state potentials with 
identical force constants, absorption and luminescence spectra 
appear as approximate mirror images that overlap at the 
electronic origin. In experimental spectra obtained from 
solutions, often only the envelope of the spectra in Figure 10 is 
observed. This envelope is determined by the decrease of the 
autocorrelation function at short times, illustrated in Figure 5.

 
Figure 11. Calculated luminescence (red dotted trace) and absorption 
(blue trace) of the model in Figure 6 for a ∆ value of  3. 

 
Figure 12. Calculated luminescence (red dotted traces) and 
absorption (blue traces) of the models in Figure 7 and 8 for different ∆ 
values: (a) ∆ = 0 and (b) ∆ = 3. 

The decrease is fastest for the largest ∆ value, leading to the 
broadest band. 

Figure 11 shows calculated absorption and luminescence 
spectra for potentials with vibrational frequencies of 600 cm�1. 
A long progression with its members separated by 600 cm�1 
appears. The overall width of the band is larger than in Figure 
10, despite the identical ∆ value used in the model calculation, 
a consequence of the larger separation between the peaks 
forming the progression. 

Figure 12 shows the spectra calculated from the models in 
Figures 7 and 8. The spectra calculated for ∆ equals 0 in Figure 
7 are shown in Figure 12a. The main intensity is observed at 
the electronic origin, similar to Figure 10a. The wavepacket 
dynamics in Figure 7 leads to an additional peak separated by 
700 cm�1 from the origin. This energy difference corresponds 
to two vibrational quanta of the ground-state potential, a 
consequence of the symmetry of the potential surface and the 
wave function at time zero. The calculated absorption 
spectrum in Figure 12a shows an energy difference of 1200 
cm�1, corresponding to the double of the excited-state 
vibrational energy. These additional peaks are weak and 
unlikely to be observed in unresolved solution spectra, but the 
wavepacket dynamics easily rationalizes the unusual vibronic 
structure for this situation. 
The effect of different vibrational frequencies and nonzero ∆ 
values is illustrated in Figure 12b. These spectra show that the 
absorption and luminescence band shapes are no longer mirror 
images as in Figure 10, as is generally the case if the two states 
involved in the transition have different potential-energy 
surfaces. 
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